Prof. Dr. Harald Steiner

Leiter Kooperations-Einheit
Prof. Dr. Steiner ist Gruppenleiter am Adolf-Butenandt-Institut der LMU

Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Feodor-Lynen-Str. 17
81377 München

harald.steiner(at)dzne.de
+49 (0) 89 / 4400-46535
+49 (0) 89 / 4400-46508

Gruppenmitglieder

Name Telefon Fax
Nadine Tamara Mylonas, Doktorandin +49 (0) 89 / 4400-46538 +49 (0) 89 / 4400-46537

Curriculum Vitae

Prof. Steiner studierte Chemie an der Universität Stuttgart und promovierte 1996 an der Ludwig-Maximilians-Universität München (LMU) in Biochemie.  Zunächst als Postdoktorand (1996 – 1999) an der Universität Heidelberg (Zentralinstitut für Seelische Gesundheit in Mannheim) dann an der LMU München als wissenschaftlicher Assistent (1999-2003), Akademischer Rat (2003 – 2007) und seit 2007 als Akademischer Oberrat tätig, beschäftigt sich Prof. Steiner seit 1996 mit den molekularen Mechanismen der Entstehung des β-amyloid Peptids (Aβ), das eine zentrale Rolle in der Pathogenese der Alzheimer Erkrankung spielt.

Nach seiner Habilitation (2002) an der LMU München und Tätigkeit als Privatdozent (2003 - 2007), wurde Prof. Steiner 2007 zum außerplanmäßigen Professor für Biochemie an der LMU München bestellt. Seit 2009 ist Prof. Steiner assoziiertes Mitglied des DZNE München. Seine Arbeitsgruppe beschäftigt sich mit der Funktionsweise der γ-Sekretase, einer kompliziert aufgebauten Protease, die an der Entstehung von Aβ beteiligt ist und einen wichtigen Angriffspunkt für therapeutische Strategien zur kausalen Behandlung der Alzheimer Erkrankung darstellt.

Für seine Forschungsarbeiten wurde Prof. Steiner mit dem Alzheimer Forschungspreis der Hans und Ilse Breuer Stiftung ausgezeichnet.

Publikationen

Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing.

SF Lichtenthaler, C Haass, H Steiner; J Neurochem. 2011 Jun;117(5):779-96. doi: 10.1111/j.1471-4159.2011.07248.x. Epub 2011 Apr 14.

APP mutants respond to {gamma}-secretase modulators.

Page RM, Gutsmiedl A, Fukumori A, Winkler E, Haass C, Steiner H.; J Biol Chem. 2010 Jun 4;285(23):17798-810. Epub 2010 Mar 26.

Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of γ-secretase-mediated intramembrane proteolysis.

Fukumori. A., Fluhrer. R., Steiner. H. & Haass. C. (2010), J. Neurosci., 30, 7853-7862.

Bepridil and amiodarone simultaneously target the Alzheimer's disease β- and γ-secretase via distinct mechanisms.

Mitterreiter, S., Page, R.M., Kamp, F., Hopson, J., Winkler, E., Ha, H-R., Hamid, R., Herms, J., Mayer, T., Nelson. D., Steiner. H., Stahl. T., Zeitschel. U., Roßner. S., Haass. C. & Lichtenthaler, S. (2010), J. Neurosci., 30, 8974-8983.

β-Amyloid precursor protein mutants respond to γ-secretase modulators.

Page, R.M., Gutsmiedl, A., Fukumori, A., Winkler, E., Haass, C & Steiner, H. (2010), J. Biol. Chem., 285, 17798-17810. 

Inhibition of γ-secretase by the CK1 inhibitor IC261 does not depend on CK1δ.

Höttecke, N., Liebeck, M., Baumann, K., Schubenel, R., Winkler, E., Steiner, H. & Schmidt, B. (2010), Bioorg. Med. Chem. Lett., 20, 2958-63.

Requirement for small side chain residues within the GxGD-motif of presenilin for γ-secretase substrate cleavage.

Pérez-Revuelta, B.I., Fukumori, A., Lammich, S., Yamasaki, A., Haass, C. & Steiner, H. (2010), J. Neurochem., 112, 940-950

Gamma-secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway.

T Bittner, M Fuhrmann, S Burgold, CK Jung, C Volbracht, H Steiner, G Mitteregger, HA Kretzschmar, C Haass, J Herms; J Neurosci. 2009 Aug 19;29(33):10405-9.

γ-Secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway

Bittner, T., Fuhrmann, M., Burgold, S., Jung, C.K., Volbracht, C., Steiner, H., Mitteregger, G., Kretzschmar, H.A., Haass, C. & Herms, J. (2009), J. Neurosci., 29, 10405-10409.

The 28-amino acid form of an APLP1-derived Aβ-like peptide is a surrogate marker for Aβ42 production in the central nervous system.

Yanagida, K., Okochi, M., Tagami, S., Nakayama, N., Kodama, T.S., Nishitomi, K., Jiang, J., Mori, K., Tatsumi, S., Arai, T., Ikeuchi, T., Kasuga, K., Tokuda, T., Kondo, M., Ikeda, M., Deguchi, K., Kazui, H., Tanaka, T., Morihara, T., Hashimoto, R., Kudo, T., Steiner, H., Haass, C., Tsuchiya, K., Akiyama, H., Kuwano, R. & Takeda, M. (2009), EMBO Mol. Med., 1, 223-235.

Purification, pharmacological modulation and biochemical characterization of interactors of endogenous human γ-secretase.

Winkler, E., Hobson, S., Fukumori, A., Duempelfeld, B., Luebbers, T., Baumann, K., Haass, C., Hopf, C. & Steiner, H. (2009), Biochemistry, 48, 1183-1197.

Chemical crosslinking provides a model of the γ-secretase complex subunit architecture and evidence for close proximity of the C-terminal fragment of presenilin with APH-1.

Steiner, H., Winkler, E. & Haass, C. (2008), J. Biol. Chem., 283, 34677-34686.

Intramembrane proteolysis of GxGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation.

Fluhrer, R., Fukumori, A., Martin, L., Grammer, G., Haug-Kröper, M., Klier, B., Winkler, E., Kremmer, E., Condron, M.M., Teplow, D.B., Steiner, H. & Haass, C. (2008), J. Biol. Chem., 283, 30121-30128.

Generation of Aβ38 and Aβ42 is independently and differentially affected by FAD-associated presenilin mutations and γ-secretase modulation.

Page, R.M., Baumann, K., Tomioka, M., Pérez-Revuelta, B.I., Fukumori, A., Jacobsen, H., Flohr, A., Luebbers, T., Ozmen, L., Steiner, H. & Haass, C. (2008), J. Biol. Chem., 283, 677-683.

Active γ-secretase complexes contain only one of each component.

Sato, T., Diehl, T.S., Narayanan, S., Funamoto, S., Ihara, Y., De Strooper, B., Steiner, H., Haass, C. & Wolfe, M.S. (2007), J. Biol. Chem., 282, 33985-33993.

ER-retention of the γ-secretase complex component Pen2 by Rer1.

Kaether, C., Scheuermann, A., Fassler, M., Zilow, S., Shirotani, K., Valkova, C., Novak, B., Kacmar, S., Steiner, H. & Haass, C. (2007), EMBO Rep., 8, 743-748.

Pathological activity of familial Alzheimer´s disease-associated mutant presenilin can be executed by six different γ-secretase complexes.

Shirotani, K., Tomioka, M., Kremmer, E., Haass, C. & Steiner, H. (2007), Neurobiol. Dis., 27, 102-107.

N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated γ-secretase.

Narlawar, R., Pérez-Revuelta, B.I., Baumann, K., Schubenel, R., Haass, C., Steiner, H. & Schmidt, B. (2007), Bioorg. Med. Chem. Lett., 17, 176-182.

Scaffold of the cyclooxygenase-2 (COX-2) inhibitor carprofen provides Alzheimer γ-secretase modulators.

Narlawar, R., Pérez-Revuelta, B.I., Haass, C., Steiner, H., Schmidt, B. & Baumann, K. (2006), J. Med. Chem., 49, 7588-7591.

SorLA signaling by regulated intramembrane proteolysis.

Bohm, C., Seibel, N.M., Henkel, B., Steiner, H., Haass, C. & Hampe, W. (2006),  J. Biol. Chem., 281, 14547-14553.

The GxGD motif of presenilin contributes to catalytic function and substrate identification of γ-secretase.

Yamasaki, A., Eimer, S., Okochi, M., Smialowska, A., Kaether, C., Baumeister, R., Haass, C. & Steiner, H. (2006), J. Neurosci., 26, 3821-3828.

Secretion of the Notch-1 Aβ-like peptide during Notch signaling.

Okochi, M., Fukumori, A., Jiang, J., Itoh, N., Kimura, R., Steiner, H., Haass, C., Tagami, S. & Takeda, M. (2006), J. Biol. Chem., 281, 7890-7898.

Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3.

Krawitz, P., Haffner, C., Fluhrer, R., Steiner, H., Schmid, B. & Haass, C. (2005), J. Biol. Chem., 280, 39515-39523.

Length and overall sequence of the PEN-2 C-terminal domain determines its function in the stabilization of the presenilin fragments.

Prokop, S., Haass, C. & Steiner, H. (2005), J. Neurochem., 94, 57-62.

γ-Secretase complex assembly within the early secretory pathway interacts.

Capell, A., Beher, D., Prokop, S., Steiner, H., Kaether, C., Shearman, M.S. & Haass, C. (2005), J. Biol. Chem., 280, 6471-6478.

The presenilin C-terminus is required for ER-retention, nicastrin-binding and γ-secretase activity.

Kaether, C., Capell, A., Edbauer, D., Winkler, E., Novak, B., Steiner, H. & Haass, C. (2004), EMBO J., 23, 4738-4748.

Identification of distinct γ-secretase complexes with different APH-1 variants.

Shirotani, K., Edbauer, D., Prokop, S., Haass, C. & Steiner, H. (2004), J. Biol. Chem., 279, 41340-41345.

Co-expression of nicastrin and presenilin rescues a loss of function mutant of APH-1.

Edbauer, D., Kaether, C., Steiner, H. & Haass, C. (2004), J. Biol. Chem., 279, 37311-37315.

Requirement of PEN-2 for the stabilization of the presenilin NTF/CTF heterodimer within the γ-secretase complex.

Prokop, S., Shirotani, K., Edbauer, D., Haass, C. & Steiner, H. (2004), J. Biol. Chem., 279, 23255-23261.

Immature nicastrin stabilizes APH-1 independent of PEN-2 and presenilin – identification of nicastrin mutants which selectively interact with APH-1.

Shirotani, K., Edbauer, D., Kostka, M., Steiner, H. & Haass, C. (2004), J. Neurochem., 89, 1520-1527.

Nicastrin interacts with γ-secretase complex components via the N-terminal part of its transmembrane domain.

Capell, A., Kaether, C., Edbauer, D., Shirotani, K., Merkl, S., Steiner, H. & Haass, C. (2003), J. Biol. Chem., 52519-52523.

γ-Secretase activity is associated with a conformational change of nicastrin.

Shirotani, K., Edbauer, D., Capell, A., Steiner, H. & Haass, C. (2003), J. Biol. Chem., 278, 16474-16744.

Reconstitution of γ-secretase activity.

Edbauer, D., Winkler, E., Regula, J.T., Pesold, B., Steiner, H. & Haass, C. (2003), Nature Cell Biol., 5, 486-490.

Presenilins mediate a dual intramembranous γ-secretase cleavage of Notch-1.

Okochi, M., Steiner, H., Fukumori, A., Tanii, H., Tomita, T., Tanaka, T., Iwatsubo, T., Kudo, T., Takeda, M. & Haass, C. (2002), EMBO J., 21, 5408-5416.

Presenilin dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide.

Lammich, S., Okochi, M., Takeda, M., Kaether, C., Capell, A., Zimmer, A.K., Edbauer, D., Walter, J., Steiner, H. & Haass, C. (2002), J. Biol. Chem., 277, 44754-44759.

PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin.

Steiner, H., Winkler, E., Edbauer, D., Prokop, S., Basset, G., Yamasaki, A., Kostka, M. & Haass, C. (2002), J. Biol. Chem., 277, 39062-39065.

Presenilin-1 affects trafficking and processing of βAPP and is targeted in a complex with nicastrin to the plasma membrane.

Kaether, C., Lammich, S., Edbauer, D., Ertl, M., Rietdorf, J., Capell, A., Steiner, H. & Haass C. (2002), J. Cell Biol. 158, 551-561. 

A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish.

Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. (2002), EMBO Rep. 3, 688-694.

Presenilin and nicastrin regulate each other and determine amyloid β-peptide production via complex formation.

Edbauer, D., Winkler, E., Haass, C. & Steiner, H. (2002), Proc. Natl. Acad. Sci. USA 99, 8666-8671.

Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Aβ42 production.

Moehlmann, T., Winkler, E., Xia, X., Edbauer, D., Murrell, J., Capell, A., Kaether, C., Zheng, H., Ghetti, B., Haass, C. & Steiner, H. (2002), Proc. Natl. Acad. Sci. USA 99, 8025-8030.

Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD).

Edbauer, D., Willem, M., Lammich, S., Steiner, H. & Haass, C. (2002), J. Biol. Chem. 277, 13389-13393.

Presenilin dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch.

Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M.M., Teplow, D.B., & Haass, C. (2001), EMBO Rep. 2, 835-841.

Endoproteolysis of the ER stress transducer ATF6 in the presence of functionally inactive presenilins.

Steiner, H., Winkler, E., Shearman, M.S., Prywes, R. & Haass, C. (2001), Neurobiol Dis. 8, 717-722. 

A pathogenic presenilin-1 deletion causes aberrant Aβ42 production in the absence of congophilic amyloid plaques.

Steiner, H., Revesz, T., Neumann, M., Romig, H., Grim, M.G, Pesold, P., Kretzschmar, H.A., Hardy, A., Holton, J.L., Baumeister, R., Houlden, H. & Haass, C. (2001), J. Biol. Chem. 276, 7233-7239.

A loss of function mutant of the presenilin homologue sel-12 undergoes aberrant endoproteolysis in Caenorhabditis elegans and increased Aβ42 generation in human cells.

Okochi, M., Eimer, S., Böttcher, A., Baumeister, R., Romig, H., Walter, J., Capell, A., Steiner, H. & Haass, C. (2000), J. Biol. Chem., 275, 40925-40932.

Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases.

Steiner, H., Kostka, M., Romig, H., Basset, G., Pesold, B., Hardy, J., Capell, A., Meyn, L., Grim, M.G., Baumeister, R., Fechteler, K. & Haass, C. (2000), Nature Cell Biol., 2, 848-851. 

Mutation of conserved aspartates affects maturation of both aspartate mutant and endogenous presenilin 1 and presenilin 2 complexes.

Yu, G., Chen, F., Nishimura, M., Steiner, H., Tandon, A., Kawarai, T., Arawaka, S., Supala, A., Song, Y.Q., Rogaeva, E., Holmes, E., Zhang, D.M., Milman, P., Fraser, P.E., Haass, C. & St George-Hyslop, P. (2000), J. Biol. Chem. 275, 27348-27353.

Separation of presenilin function in amyloid β-peptide generation and endoproteolysis of Notch.

Kulic, L., Walter, J., Multhaup, G., Teplow, D.B., Baumeister, R., Romig, H., Capell, A., Steiner, H. & Haass, C. (2000), Proc. Natl. Acad. Sci. USA 97, 5913-5918. 

Maturation and propeptide cleavage of β-secretase.

Capell, A., Steiner, H., Willem, M., Kaiser, H., Meyer, C., Walter, J., Lammich, S., Multhaup, G. & Haass, C. (2000), J. Biol. Chem. 275, 30849-30854.

Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch.

Capell, A., Steiner, H., Romig, H., Keck, S., Baader, M., Grim, M.G., Baumeister, R. & Haass, C. (2000), Nature Cell Biol., 2, 205-211.

An in vivo assay for the identification of target proteases which cleave membrane-associated substrates.

Steiner, H., Pesold, B. & Haass, C. (1999), FEBS Lett. 463, 245-249. 

Amyloidogenic function of Alzheimer's disease associated presenilin-1 in the absence of endoproteolysis.

Steiner, H., Romig, H., Pesold, B., Baader, M., Citron, M., Loetscher, H., Jacobsen, H. & Haass, C. (1999), Biochemistry 38, 14600-14605. 

A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling.

Steiner, H., Duff, K., Capell, A., Romig, H., Grim, M.G., Lincoln, S., Hardy, J., Yu, X., Picciano, M., Fechteler, K., Citron, M., Kopan, R., Pesold, B., Keck, S., Baader, M., Tomita, T., Iwatsubo, T. & Haass, C. (1999), J. Biol. Chem. 274, 28669-28673. 

The biological and pathological function of the presenilin-1 ∆exon9 mutation is independent of its defect to undergo proteolytic processing,

Steiner, H., Romig, H., Grim, M.G., Philipp, U., Pesold, B., Citron, M., Baumeister, R. & Haass, C. (1999), J. Biol. Chem. 274, 7615-7618. 

Expression of Alzheimer's disease associated presenilin-1 is controlled by proteolytic degradation and complex formation.

Steiner, H., Capell, A., Pesold, B., Citron, M., Kloetzel, P.M., Selkoe, D.J., Romig, H., Mendla, K. & Haass, C. (1998), J. Biol. Chem. 273, 32322-32331.

Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42.

Wild-Bode, C., Yamazaki, T., Capell, A., Leimer, U., Steiner, H., Ihara, Y. & Haass, C. (1997), J. Biol. Chem. 272, 16085-16088.

Role of the intermembrane-space domain of the preprotein receptor Tom22 in protein import into mitochondria.

Court, D.A., Nargang, F.E., Steiner, H., Hodges, R.S., Neupert, W. & Lill, R. (1996), Mol. Cell. Biol. 16, 4035-4042.

Heme binding to a conserved Cys-Pro-Val motif is crucial for the catalytic function of mitochondrial heme lyases.

Steiner, H., Kispal, G., Zollner, A., Haid, A., Neupert, W. & Lill, R. (1996), J. Biol. Chem. 271, 32605-32611. 

Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein.

Kispal, G., Steiner, H., Court, D.A., Rolinski, B. & Lill, R. (1996), J. Biol. Chem. 271, 24458-24464. 

Biogenesis of mitochondrial heme lyases in yeast: Import and folding in the intermembrane space.

Steiner, H., Zollner, A., Haid, A., Neupert, W. & Lill, R (1995), J. Biol. Chem. 270, 22842-22849.

The PMR2 gene cluster encodes functionally isoforms of a putative Na+-pump in the yeast plasma membrane.

Wieland, J., Nitsche, A.M., Strayle, J., Steiner, H. & Rudolph, H.K. (1995), EMBO J. 14, 3870-3882.

Reviews and Commentaries

Intramembrane proteolysis by signal peptide peptidases - similar mechanisms of GxGD-type aspartyl proteases γ-secretase?

Fluhrer, R., Steiner, H. & Haass, C. (2009), J. Biol. Chem., 284, 13975-13979.

Intramembrane proteolysis by γ-secretase.

Steiner, H., Fluhrer, R. & Haass, C. (2008), J. Biol. Chem., 283, 29627-29631.

The catalytic core of γ-secretase: presenilin revisited.

Steiner, H. (2008)., Curr. Alzheimer Res., 5, 147-157.

Sheddases and intramembrane-cleaving proteases: RIPpers of the membrane.

Lichtenthaler, S.F. & Steiner, H. (2007), Symposium on regulated intramembrane proteolysis. EMBO Rep., 8, 537-541.

Assembly, Trafficking and Function of γ-secretase.

Kaether, C., Haass, C. & Steiner, H. (2006), Neurodegenerative Dis., 3, 275-283.

Uncovering γ-secretase.

Steiner, H. (2004), Curr. Alzheimer Res., 1, 175-181.

Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases.

Haass, C. & Steiner, H. (2002), Trends Cell Biol., 12, 556-562.

Nuclear signaling–A common function of presenilin substrates?

Steiner, H. & Haass, C. (2001), J. Mol. Neurosci., 17, 193-198.

The Cell Biology of Alzheimer´s Disease: Uncovering the secrets of secretases.

Walter, J., Kaether, C., Steiner, H. & Haass, C. (2001), Curr. Opin. Neurobiol., 11, 585-590.

Secretases reveal their secrets: proteolysis in Alzheimer's disease.

Haass, C., Annaert, W., Steiner, H. & De Strooper, B. (2001), In The ELSO Gazette: e-magazine of the European Life Scientist Organization (http://www.the-elso-gazette.org/magazines/issue3/reviews/reviews1.asp), Issue 3 (3 January, 2001).

Intramembrane proteolysis by presenilins.

Steiner, H. & Haass, C. (2000), Nature Rev. Mol. Cell. Biol., 1, 217-224.

Mutation of conserved aspartates affects maturation of both presenilin 1 and presenilin 2 complexes.

Yu, G., Chen, F., Nishimura, M., Steiner, H., Tandon, A., Kawarai, T., Arawaka, S., Supala, A., Song, Y.Q., Rogaeva, E., Holmes, E., Zhang, D.M., Milman, P., Fraser, P.E., Haass, C. & St George-Hyslop, P. (2000), Acta Neurol. Scand. Suppl. 176, 6-11.

Alzheimer Gene: Ihre Wirkung auf die Amyloidentstehung und die Embryonalentwicklung.

Steiner, H. & Haass, C. (2000), Einsichten 17, 10-13. 

Genes and mechanisms involved in amyloid β-peptide generation and Alzheimer's disease.

Steiner, H., Capell, A., Leimer, U., & Haass, C. (1999), Eur. Arch. Psychiatry Clin. Neurosci., 249, 266-270.

Proteolytic processing and degradation of Alzheimer's disease relevant proteins.

Steiner, H., Capell, A. & Haass, C. (1998), Biochem. Soc. Trans., 27, 234-242.

Proteolytic processing of presenilin proteins: degradation or biological activation?

Grünberg, J., Capell, A., Leimer, U., Steiner, B., Steiner, H., Walter, J. & Haass, C. (1997), Alzheimer’s Research 3, 253-259.

Protofibrils, the unifying toxic molecule of neurodegenerative disorders?

Steiner, H. & Haass, C. (2001)., Nature Neurosci., 4, 859-860. 

Pore-forming scissors? A first structural glimpse of γ-secretase.

Steiner, H., Than, M., Bode, W. & Haass, C. (2006), Trends Biochem. Sci., 31, 491-493.

Book chapters

GxGD-type intramembrane proteases: A family of novel aspartate proteases.

Steiner, H. & Haass, C. (2007), In: Proteases in Biology and Disease, volume 6: Intramembrane-cleaving proteases (I-CliPs) (Hooper, N.M. & Lendeckel, U., eds.), Springer-Verlag, pp. 31-49

Functional characterization of the γ-secretase complex.

Steiner, H., Edbauer, D., Winkler, E. & Haass, C. (2003), In: Alzheimer's Disease and Related Disorders: Research Advances (Iqbal, K. & Winblad, B., eds.), “Ana Aslan” International Academy of Aging, pp. 377-383.

Presenilin dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch.

Steiner, H., Sastre, M., Multhaup, G., Teplow, D.B. & Haass, C. (2002), In: Advances in Behavioral Biology, Volume 51: Mapping the progress of Alzheimer´s and Parkinson´s Disease (Mizuno, Y., Fisher, A. & Hanin, I., eds.), Kluwer Academic / Plenum Publishers, New York, pp. 91-94.

A presenilin-dependent S3-like γ-secretase cleavage of the β-amyloid precursor protein.

Steiner, H., Sastre, M., Multhaup, G., Teplow, D.B. & Haass, C. (2002), In: Research and Perspectives in Alzheimer´s Disease. Notch from Neurodevelopment to Neurodegeneration: Keeping the Fate (Israel, A., De Strooper, B., Checler, F. & Christen, Y., eds.), Springer-Verlag, Berlin, pp. 59-61.

A novel protease active site motif conserved in presenilins and polytopic bacterial aspartyl proteases?

Steiner, H. & Haass, C. (2001), In: Alzheimer's Disease: Advances in Etiology, Pathogenesis and Therapeutics (Iqbal, K., Sisodia, S.S. & Winblad, B., eds.), John Wiley & Sons, Ltd, pp. 549-558.

Role of presenilin processing and caspases for amyloid β-peptide generation and Notch signaling.

Röhrig, S., Brockhaus, M., Steiner, H., Capell, A., Grünberg, J., Walter, J., Leimer, U., Loetscher, H., Wittenburg, N., Jacobsen, H., Baumeister, R. & Haass, C. (1999)., In: Alzheimer’s Disease and Related Disorders (Iqbal, K., Swaab, D.F., Winblad, B. & Wisniewski, H.M., eds.), John Wiley & Sons Ltd., pp. 353-362.

Molecular mechanisms of protein translocation into and across the mitochondrial outer membrane.

Lill, R., Mayer, A., Steiner, H., Kispal, G. & Neupert, W. (1996), In: Advances in Molecular and Cell Biology, Volume 17: Protein targeting to mitochondria (Bittar, F.E. & Hartl, F.U., eds.), JAI Press, Greenwich, pp. 51-70.

Protein transport into and across the mitochondrial outer membrane: Recognition, insertion and translocation of preproteins.

Lill, R., Kispal, G., Künkele, K.-P., Mayer, A., Risse, B., Steiner, H., Heckmeyer, P., van der Klei, I. & Court, D.A. (1996), In: Proceedings of the NATO/ASI, Cell Biology: Molecular Dynamics of Biomembranes (Op den Kamp, J.A.F., ed.), Springer-Verlag, Berlin, pp. 137-155. 


Forschungsschwerpunkte

Abb. 1.: Intramembranale Proteolyse des APP durch den γ-Sekretase Komplex
Abb. 1.: Intramembranale Proteolyse des APP durch den γ-Sekretase KomplexZum Vergrößern bitte auf die Lupe klicken.

Die Akkumulation des Amyloid-β-Peptids (Aβ) in senilen Plaques ist ein unveränderliches pathologisches Merkmal der Alzheimer-Krankheit (AD). Aβ wird durch proteolytische Prozessierung des β-Amyloid Precursor Proteins (APP) durch die beiden membrangebundenen Aspartylproteasen β- und γ-Sekretase, freigesetzt. γ-Sekretase ist ein großer Proteinkomplex der sich aus dem AD-assoziierten Presenilin (PS) Protein als katalytische Untereinheit, Nicastrin (NCT), APH-1 und PEN-2 zusammensetzt und APP innerhalb seiner Transmembrandomäne (Abb. 1) spaltet. Um ein besseres Verständnis der Wirkweise von γ-Sekretase und der Intramembranproteolyse für die allgemeine Forschung zu erhalten, konzentriert sich unsere Gruppe derzeit auf folgende Aspekte der Biochemie der γ-Sekretase:

  • Molekulare Zusammensetzung der γ-Sekretase und die Architektur der Untereinheit
  • Struktur-/Funktionsanalyse der γ-Sekretase Untereinheiten PS, NCT, APH-1 und PEN-2
  • Molekulare Erkennung von Substraten der γ-Sekretase
  • Modulation der γ-Sekretase-Aktivität

Die Homepage des Kooperationspartners finden sie hier.